Compiling Communicating Processes into -

Delay-Insensitive VLS| Circuits

Alain J. Martin

Computer Science Department
California Institute of Technology

5210:TR: 86

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Compiling Communicating Processesint Delay-Insensitive VLS| Circuits | o o\ 1 NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Compiling Communicating Processes
into

Delay-Insensitive VLSI Circuits

Alain J. Martin
Department of Computer Science
California Institute of Technology

Pasadena CA 91125, USA
5210:TR:86

81 December 1985
published in: Distributed Computing, (1986) 1:226-234

1. Introduction

If VLSI is an adequate technology to implement highly concurrent computations [7],
it should be possible to apply to VLSI the already well-established design methods for dis-
tributed programming. Ideally, a distributed computation should be described in a notation
that can be compiled into a VLSI-circuit as well into code for a stored-program computer.
The method described in this paper is a step in that direction. At the moment, the term
“compiling” means a “systematic, semantics-preserving transformation”. The ultimate goal
of the transformation being carried out automatically has not yet been achieved, although
we believe that it is not remote.

In the method we propose, the computation is initially described as a set of communi-
cating processes in the notation of [3], which is somewhat similar to C.A.R. Hoare’s CSP [2].
This first description is the reference solution, which has to be proved correct. The program
is then compiled into a delay-insensitive circuit by applying a series of semantics-preserving
transformations. Hence the circuit obtained is correct by construction: all semantic prop-
erties that can be proved of the program hold for the circuit as well.

Following [11], a circuit is called delay-insensitive when its correct operation is inde-
pendent of any assumption on delays in operators and wires, except that the delays are

finite. Consequently, such circuits do not use a clock signal: sequencing is enforced entirely
by communication mechanisms. Delay-insensitive circuits have been known and used for
their elegance, versatility, and robustness, which result from the ideal separation of concerns
they provide between the mathematical and physical aspects of circuit design.

The first modern survey on the topic is [10], where such circuits are called self-timed. A
different approach—the macro-module approach—is described in [8]. Closer to our method
is the recent work at Eindhoven University of Technology, a good survey of which is [9].

A circuit is a network of elementary operators (and, or, C-element, arbiter, synchro-
nizer, wire, fork). The specification of an operator is a so-called production rule set, where
a production rule is a “weaker” form of guarded command, and a production rule set a
“weaker” form of repetition. The compilation relies essentially on the four-phase (also called
four-cycle) handshaking expansion of the communications. After expansion, the program
of each process is compiled into a production rule set from which all explicit sequencing has
been removed. By matching those production rules to those describing the operators, the
programs are identified with networks of operators.

The method has already been applied to a whole spectrum of problems, some of them,
such as distributed mutual exclusion [4], and fair arbitration [5], being quite difficult. The
results are beyond our original expectations. For many circuits, especially complex ones,
the compiled circuits are superior to their “hand-designed” counterparts, which are often
more complex and not entirely delay-insensitive.

We first present the program notation and the VLSI operators that constitute the
“object code”. We then describe the four steps of the compilation and illustrate the method
with a number of simple examples.

2. The program notation

Sequential part

For the sequential part of the algorithm, we use a subset of Edsger W. Dijkstra’s guarded
command language [1], with a slightly different syntax. In this introductory paper we give
only a very informal definition of the semantics of the constructs used.

i) b1 stands for b := true, b | stands for b := false.

ii} The execution of the selection command [G1 — 81 | ... | Gn — S|, where Gy through
G, are Boolean expressions, and S; through S, are program parts, (G; is called a
“guard”, and G; — S; a “guarded command”) amounts to the execution of an arbitrary
S; for which G; holds. If —=(G; Vv ...V G,) holds, the execution of the command is
suspended until (G; V...V G,) holds. v

iii) For atomic actions z and y, “z,y” stands for the execution of z and y in any order.

iv) [G] where G is a Boolean, stands for [G — skip|, and thus for “wait until G holds”.
{Hence, “[G]; S”and [G — S| are equivalent.)

v) *{S] stands for “repeat S forever”.

vi) From ii) and iii), the operational description of the statement

*[[G1 — 81| ... | Gn — S,]] is “repeat forever: wait until some G; holds; execute an
8; for which G; holds”.

Communicating processes

A concurrent computation is described as a set of processes composed by the usual parallel
composition operator ||. Processes communicate with each other by communication actions
on channel; they do not share variables. When no messages are transmitted, communication
on a channel is reduced to synchronization signals. The name of the channel is then sufficient
for identifying a communication action.

If two processes pl and p2 share a channel named X in pl and Y in p2, at any time
the number of completed X-actions in pl equals the number of completed Y-actions in
p2. In other words, the completion of the n-th X-action “coincides” with the completion
of the n-th Y-action. If, for example, pl reaches the n-th X-action before p2 reaches the
n-th Y-action, the completion of X is suspended until p2 reaches Y. The X-action is then
said to be pending. When thereafter p2 reaches Y, both X and Y are completed. The
predicate “X is pending” is denoted gqX. If, for an arbitrary command A, ¢ A denotes the
number of completed A-actions, the semantics of a pair (X,Y") of communication commands
1s expressed by the two axioms:

cX=cY (A1}
-~qX Vv ~qY. (A2)

Probe

Instead of the usual selection mechanism by which a set of pending communication actions

can be selected for execution, we provide a general Boolean command on channels, called
the probe. The definition of the probe given in [3] states that in process pl, the probe
command X has the same value as qY. Here, we use a weaker definition, namely:

X=>qY
qY = oX,

where ¢P means P holds eventually.

Hence the guarded command X — X guarantees that the X-action is not suspended.
And a construct of the form [X — X | Y — Y] can be used for selection. (For a more
rigorous definition of the communication mechanism and the probe, see {3].)

3. The “Object Code”

The set of operators with which we want to build our circuits is not unique. In this
introduction, we will use the simple set consisting of and, or, C-element, wire, and fork.
We believe that this simple set extended with an arbiter and a synchronizer is sufficient
for compiling any program. Fach operator is described by a set of production rules. A
production rule is similar to a guarded command, and we shall therefore use a similar
syntax. There are, however, important semantic differences. Consider the production rule
G— 5

¢ S is either a simple assignment or of the form “sl,s2” where s1 and s2 are each a
simple assignment.

e If G holds, the correct execution of S is guaranteed only if G remains invariantly true
until the completion of S. We say that G must be stable.

e Unlike the guarded commands of a selection or a repetition, the mutual exclusion
among the different production rules of a set is not guaranteed automatically. It has
to be enforced by the semantics of the program.

o If stability of the guards and mutual exclusion among guards are guaranteed, the
production rule set PRS is semantically equivalent to the repetition *[[GCS]], where
GCS is the guarded command set syntactically identical to PRS.

The description of the five operators used in this paper in terms of their production
rules and their logic symbols are as follows.

The C-element;

X
(29) Cr= zAy > 21 .
—zA-y—z].
Y
The “and”:
(z,9) Az=zAy— 21 X -
SEV Yz). Y
The “or”:
(x,y)ngszn—rzT X -
Ay E— 2.
The wire:
rwy=z—yl X 7
—-z:r—-;yl, -
The fork: I

X
zf (w,2)=z—yt,21
—z—yl,z]. z

Any input or output variable of an operator may be negated. In particular, a wire with
its input or its output negated—but not both—is an inverter. A negated input or output
is represented in the figures by a small circle on the corresponding line.

4. The Compilation Method

Proceas Decomposition

The first step of the compilation, called “process decomposition”, consists in replacing a
process by several semantically equivalent processes. The purpose of the decomposition
is to obtain a process representation of the program in which the right-hand side of each

4

guarded command is a straight-line program, i.e. consists only of simple assignments and
communication commands, composed by semi-colons and commas.

Decomposition rule: A process P containing an arbitrary program part S is semantically
equivalent to two processes Pl and P2, where P1 is derived from P by replacing § by a
communication action C on the newly introduced channel (C, D) between P1 and P2, and
P2= *[[ﬁ-—b S; D).

Observe that the above decomposition does not introduce concurrency. Although P1
and P2 are potentially concurrent processes, they are never active concurrently: P2 is
activated from P1, much as a procedure or a coroutine would be. The only purpose of this
transformation is to simplify the structure of each command. As an example, consider the
process:

P = «[[..A4;[By — 81 | By — Sa;..]]-

Applying the decomposition rule, P is replaced by the two processes P1 and P2.
Channel (C, D) is introduced between P1 and P2.

Pl = #[[...4;C;..]]
P2 = «[[DAB; — S;; D
lﬁ/\ By — Sq; D

Il

Observe that the newly created processes P1 and P2 may share variables. Since the
processes are never active concurrently, there ig no conflicting access to the shared variables.
Process decomposition is applied repeatedly until the right-hand side of each guarded com-
mand is a straight-line program.

Handshaking Expansion

The implementation of communication, called “handshaking expansion”, replaces each
channel by a pair of wire-operators and each communication action by its implementation.
Channel (X,Y) is implemented by the two wires (zo w yi) and (yo w xi).

If X belongs to process pl and ¥ to process p2, zo and zi belong to pl, and yo and
yt belong to p2. Initially, zo, z3, yo, and ys—which we will call the “handshaking variables
of (X,Y)” —are false. Assume that the program has been proved to be deadlock-free and
that we can identify a pair of matching actions X and ¥ in pl and p2 respectively. We
replace X and Y by the sequences U, and U, respectively, with:

Uy ==zo0T; [zf]
Uy = [ui]; yot.
The formal proof that U, and Uy fulfil axioms Al and A2 is omitted. The following is
an informal argument that relies on a definition of completion of an action different from

the usual one. Since the argument is not essential to the comprehension of the method, it
may be skipped at first reading.

Assume that we know what the tnitiation and termination of an atomic action mean.
A non-atomic action is initiated when its first atomic action is initiated. A non-atomic
action is terminated when its last atomic action is terminated.

A non-atomic action is said to be completed when it is initiated and it i3 guaranteed
to terminate.

(An atomic action is completed when it is terminated.) Between initiation and com-
pletion, an action is suspended.

Obviously, Uz and U, are guaranteed to terminate if and only if they are both initiated,
which establishes A1 and A2.

It i3 essential to observe that these definitions of completion and suspension are valid
because they satisfy the semantic properties of completion and suspension that are used in
correctness arguments, namely:

{cX=2z} X {cX=2z+1}

qX = pre(X)
where pre(X) is any precondition of X in terms of the program variables and auxiliary
program variables.
(This completes the argument.)

Unfortunately, when the comrnunication terminates, all handshaking variables are

true. Hence, we cannot implement the next communication with U; and U,. However,
the complementary implementation can be used for the next matching pair, namely:

D, ==zo; [
Dy = [-yi]; yol.

The solution consisting in alternating U, and D, as an implementation of X, and U},
and D, as an implementation of Y is essentially the so-called “two-phase handshaking”,
or “two-cycle signaling”. However, it is in general not posgible to determine syntactically
which X- or Y-actions are following each other in an execution. In general, two-phase
handshaking implementations require testing the current value of the variables. In this
paper, we shall use a simpler but less efficient solution known as “four-phase handshaking”,
or “four-cycle signaling”.

In a four-phase handshaking protocol, all X-actions are implemented as “U7;; D,” and
all Y-actions as “Uy; D,”. Observe that the D-parts in X and ¥ introduce an extra commu-
nication between the two processes whose only purpose is to reset all variables to falae. The
synchronization introduced by this extra communication is unnoticeable since the immedi-
ately preceding communication implemented by U, and U, sees to it that both processes
reach a matching D; and D, “at the same time”.

Both protocols have the property that for a matching pair (X,Y) of actions, the im-
plementation is not symmetrical in X and Y. One action is called active and the other one
passive. The four-phase implementation with X active and Y passive is:

X =zot; [z1]; zol; [~z (1)

8

Y =[yi]; yot; [-yi]; vol (2)

When no action of a matching pair is probed, the choice of which one should be active
and which one passive is arbitrary, but a choice has to be made. The choice can be important
for the composition of identical circuits. A simple rule is that for a given channel (X,Y),
all actions at one side are active and all actions at the other side passive. If X is used,
all X-actions are passive—with the obvious restriction that ¥ cannot be used in the same
program.

The implementation of the probe is simply:

X=ux

Y=y)

Given our definition of suspension, the proof that this implementation of the probe fulfils

the definition of Section 2 is atraightforward and is omitted.

A probed communication action X — ... X is implemented:
zi — ...zoT; [—zi]; zo).

Basic properties

The following properties of the handshaking protocol play an important role in the compi-
Iation method.

Property 1: For the pair of wires (zo w yi) and (yo w z1), used together as in (1) and (2),
and all variables false initially, the following sequence of transitions is guaranteed to occur
if the system is deadlock-free:

*[zot; yil; yol; =i 1; zol; yil; yol; zi]. (4)
Hence, the following postconditions hold:

zo T {ozs}
zo | {o—zi} (5)
yoT{o-yi}

Property 2: Consider the handshaking expansion of a program p according to (1), (2),
and (3). Provided that the cyclic order of the four handshaking actions of a communication
command is respected, the last two actions of this command—the two actions of D, or Dy—
can be inserted at any place in p without invalidating the semantics of the communication
involved. However, modifying the order of these two actions relatively to other actions of p
may introduce deadlock.

Property 2 is a direct consequence of the way in which we have introduced the sequences
D, and D,. We will see examples of how to use Property 2. In this paper, we will ignore
the deadlock issue when we re-order handshaking actions.

7

First example: stack element

Consider the simple process S, which we call a“stack element”:
S =x*L—R; L],

where L and R are channels. Since L is probed, it must be passive, and if we want to
compose S-processes together, R must be active, since it will match a passive L. The
handshaking expansion gives:

*[[l]; rot; [ri]; rol; [-ri]; Loty [w]; lo). (6)

5. Production-rule expansion

The next step is to compile the handshaking expansion of the program into a set of pro-
duction rules from which all explicit sequencing has been removed. By matching those
production rules to those describing the semantics of operators, the programs can be iden-
tified with networks of operators. We use the compilation of S to illustrate the different

steps of the expansion.

We start with the production rule set syntactically derived from the program. In the
case of S, it is the set derived from (6), namely:

li—rot
ri—ro)
-ri—lol

—li—lo|.

The execution of a producticn rule is called effective if it changes the value of a variable.
Otherwise, 1t is called vacuous. We ignore vacuous executions of production rules.

For each guarded command of the program, the production rule set representation is
semantically equivalent to the program representation if and only if the order of execution
of effective production rules is the same as the order of the corresponding transitions in the
program—we call it the program order. (As a clue to the reader we list the production rules
of a set in program order.)

In general, we have to strengthen the guards of some rules to enforce execution in pro-
gram order. This is the case in our example: Since —rs holds initially, the third production
rule can be executed first. It is also true for the fourth production rule; but the execution
of the fourth rule in the initial state is vacuous.

Because all handshaking variables of R are back to false when R is completed, we
cannot find a guard for the transition lof. (Hence, the transitions following a semi-colon
that can be identified with a semi-colon of the original program are likely to be difficult to

deal with.)

Direct implementation

In order to define uniquely the state in which the transition lo 1 is to take place, the first
technique consists in introducing a state variable, say z, initially false. S becomes

8

*[[l]; ro s [rd]; 215 (2] rol; [-ri]; o1y [DE]; zl; [~z]; o). (7}

Now, the production-rule expansion can be performed:

-z Ali > ro T{ori} (S1)
ri — x1{z} (S2)

z — ro |[{z A o-ri} (S3)

z A —ri - loT{o=li} (S4)
-l — z | {~z} (55)
—z—lo]. (S6)

(Why is the conjunct —z necessary in the first rule?) Using the postconditions indicated
between braces—these conditions rely on (5)—, it is easy to verify that the production rules
of the set are executed in program order. Hence, the execution of the production rule set
is equivalent to the execution of (7).

Re-ordering implementation

Another way to find a valid guard for {01 is to use Property 2, to re-order the actions
of (6). For instance, we can postpone the second half of the handshaking expansion of S
—i.e., the sequence ro |; [-ri]—until after [-/{]. We get: ’

*[[ti]; ro1; [rd]; lo 15 [-E]; ro l; [-ril; lo]]. (8)

The syntactic production rule expansion is already “program ordered”:

li—ro?
ri—lot
=i +— ro]

—ri—lo].
6. Operator reduction

The last step of the compilation, called operator reduction, consists in identifying sets
of production rules in the program with sets of production rules describing operators. The
program can then be identified with a set of operators. We group pairs of production rules
that modify the same variable.

If a given group cannot be directly identified with the production rule set of an operator,
we perform on this group a last transformation called symmetrization: we transform the
guards of the production rules—again under invariance of the semantics—so as to make
them “look like” the guards of operators. In case a guard contains too many variables,
this step may also involve decomposing a production rule into several production rules by
introducing new internal variables.

Consider S1 and S3. No operator corresponds to these rules. But, if we replace z by
—li v z in §3, the value of the guard of 53 is not changed since ! holds as precondition

9

of S3, and now the two production rules represent the operator (—z,{{} A ro . Since we
have weakened the guard of $3, we have to check that we have not enlarged the set of
states in which S§3 can be effectively executed. No such state has been added, hence the
transformation is safe.

In the case of §2 and S5, no guard can be weakened. We therefore strengthen both of
them as
riAli—xT

—rf A =i zl,

which corresponds to the C-element (ri,is) C z. Observe that strengthening the guards
in this way is always possible since the guards are mutually exclusive by construction.
Hence it is always possible to implement a pair of guards with a C-element. Why then
bother about weakening the guards? The answer is that introducing a disjunction is the
only transformation leading to combinatorial operators—and, or—, which are usually less
“expensive” than C-elements—a C-element is a state-holding operator.

For the direct implementation of S, the symmetrization of the set S1 through S8 gives:

—~zAli—rot (S1)
riAlf—] (S2)
“liversro] (S3)
zA-ri— ot (54)
i Al] (55)
rivV-azreslo]|. (s6)

The identification with operators is now straightforward.
(51, $3) corresponds to (-z, i) A ro.

(S2, S5) corresponds to (If,r) Cz.

(54, $6) corresponds to (z,—ri) A lo.

Isochronic forks

In the previous operator reduction, If is input to the C-element (lf,ri) C z, and to the
and-operator (li,—x) A ro. Formally, in order to compose the circuit we have to introduce
the fork Ii f (I1,12) and replace Ii by I1 in the C-element and by {2 in the and-operator.

Since the fork is delay-insensitive, I1 and /2 are not guaranteed to have the same value
in all states, whereas the two operators are constructed with the same input variable Is,
We solve this problem by making a simplifying assumption: we assurne that the forks used
to connect operators inside a process are tsochronic, i.e. the delays in these forks are short
enough, compared to the delays in all operators other than forks and wires, to assume that
the two outputs of an isochronic fork have the same value at any time.

The resulting circuit$ is shown in Fig. 1.

10

—Figure 1-

For the second implementation of S—with re-ordering of actions—the production rule set
can be reduced directly: the first and third rules specify the wire If w ro, the second and
fourth rules specify the wire rf w lo. The circuit is shown in Fig. 2.

l ro

lo r

-Figure 2-

Comparing the circuits of Figs. 1 and 2, we observe that the re-ordering of handshaking
actions leads to a simpler implementation. This observation is true in general, although the
gain is not always as drastic as in this case. We also observe that re-ordering handshaking
actions modifies the behavior of the circuit concerning its synchronization with its environ-
ment. This is not surprising since the second half of a handshaking sequence—the part that
we shift from its place—is an extra synchronization action. Placed just after the first half,
this second synchronization has no noticeable effect. But its synchronization effect becomes
noticeable when the action is shifted away from the first half of the handshaking sequence.
Hence the choice to re-order actions is a choice in favor of a simpler circuit at the cost of
modifying the original synchronization behavior of the circuit—in general for the worse.

7. Second example: one-place buffer

Our second example is the simple “one-place buffer” process

B = «[L; R],

where L and R are two channels. The handshaking expansion of B gives:

B = #[[li]; lot; [Hi]; lo]; rot; [ri]; rol; [-ri]]. (9)

11

Here the difficult transition is rof. In this example we construct only the solution
obtained by re-ordering of actions. The construction of the solution with introduction of a
state variable is more difficult and is left as an exercise to the reader. (It is described in
{6].) If we postpone the second half of the handshaking expansion of L until after [ri], we
get:

] lot; rof; [ri]; [Hh]; o l; rol; [-rd]],
which we can also re-order as:

#[[-ri]; [i]; loT; rot; [ri]; [-lf); lo]; rol]. (10}
The order between two successive transitions on output variables—like lo; ro f—is irrele-
vant. Hence the production-rule expansion of (10) gives:

riAli = loT,ret

riA-li —lo|,ro].
After introducing the auxiliary variable u, the production rule expansion is straightforward:
(=i,) C u)
(uf (lo,ro)).

The corresponding circuit is shown in Fig. 3.

[0 o

- .

C:. C L (.'
—Figure 3—

8. Message communication

So far, we have only considered the synchronization aspect of the communication actions:
no message was passed. The last two examples describe implementations of communications
that entail transmissions of messages. We consider the transmission of Boolean variables
only; the generalization to other types is relatively straightforward.

Third example: Queue (FIFO) element

Queues (FIFO) play an important role in pipeline computations for increasing throughput
when processing times are variable. - A queue consists of the linear composition of a number
of buffer-elements of the type:

12

E = «[L?(z); R\(z)]. (11}
(L?(z) is an input action assigning to internal variable z the value received on L. R!(z)
is an output sending the value of z on channel R.)

We are going to implement the transmission of true messages and of false messages
on two independent channels. We shall construct a circuit for each type of messages, and
then compose the two circuits. Such a technique is called the “double-rail” technique [10].
We get:

*[[Lt — Lt; Rt
|Ly = Ly; By
I8

where = v —:ff holds at any time.

If we let channels L; and Ly share variable lo, and channels R; and R share variable
ri, the handshaking expansion gives the two guarded commands:

#[[liy = lot; [liy]; lol; ror 1 [ri]; rog }; [-ri]
[liz — lo1; [Hlia]; lol; roa®; [ril; rogl; [-ri] (12)

Il

The production rule expansion of (12) has to guarantee mutual exclusion between
the two guarded commands. Since —li; vV —li; holds at any time, it is easy to see that
mutual exclusion is guaranteed if we re-order the actions of each guarded command as in
the implementation of B. We get:

#[[-ri Aliy = loT,ror T; [ri A=liy]; lo|,ro1 |
|~riAlig = loT,ros T; [ri A-lia]; lo,roz] (13)

II-

Since each of the two guarded commands of (13) is identical to {10), the circuit for {12)
conagists of two copies of the circuit of Fig. 3 composed in the obvious way so as to share lo

and r¢. Hence the circuit of Fig. 4. S ro
> 15

(Jf

t

}fOZ

-Figure 4-

13

Fourth example: single variable

Consider the following process that provides read and write access to a simple Boolean

variable z: _
*[[P — Pz

@ — Qlz (14)
]]l

where ~P V —@Q holds at any time.

Again, according to the double-rail technique, each guarded command of (14) is ex-
panded to two guarded commands. But now the values true and false have to be explicitely
assigned to z, in the following way:

*[[pir — 21; [z]; pot; [-pi1]; pol
lpiz — = |; [-z]; poT; [-pi2]; pol
|z A gi — qor 1; [—as]; o1l (15)
|~z A gi = goz 1; [—gi]; qoz |

I

The rest of the compilation is now straightforward and is left as an exercise to the
reader. (Hint: don’t forget to ensure mutual exclusion between the guarded commands.)

The operator reduction gives:

(pi1, —pi2) C
(pi1,Z) A por
(pi2, -z) A por
(po1,p03) V po
(z,qt) Aqor
(—=z, ¢t) A gos.

The circuit is represented in Fig.6.

/047 > ‘ ?01

4+

| < |

%

/Dd 277 7%
-Figure 6-

:

14

9. Conclusion

We have described a method for implementing a high-level concurrent algorithm (a set of
communicating processes) as a network of digital operators that can be directly mapped
into a delay-insensitive VLSI-circuit. The circuit is derived from the program by a series of
systematic, semantics-preserving, transformations that we have compared to compiling.

Since the circuits are correct by construction, and in particular, since the guards of the
production rules are stable by construction, the circuits are free from “hazards”.

The choice between active and passive implementations is usually clear from the con-
text. For instance, the choice to implement input as passive and output as active is most
of the time safe. Furthermore, in the case the wrong choice has been made and it turns out
that two active or two passive commands have to be paired, an “adaptor” process can be
used. An adaptor is a one-place buffer with L and R both active—a “double-A” —or both
passive—a “double-P”. A double-A is used to pair two passive commands, a double-P to
pair two active commands.

The simplifying assumption of isochronic forks is not severe, since such a fork is always
confined to a very small circuit part. In fact, it is even weaker than the usual isochronic
assumption used in self-timed design, where a whole circuit part is assumed isochronic. We
believe that isochronic forks can be avoided, but doing so would complicate the circuits
without real advantage in return.

We also believe that the basic sets of operators used in this paper, extended with an
arbiter and a synchronizer to implement mutual exclusion among independent commands,
is sufficient for all purposes. (Obviously, having both and and or is redundant.) How-
ever, there is no interest in confining the designer to a minimal set of operators. On the
contrary, since one of the advantages of VLSI is the possibility to create operators at no
cost, introducing other operators—Ilike, e.g., and and or with more than two inputs, or
exclusive-or—may often simplify a circuit drastically.

We have illustrated the method with four simple—sometimes deceivingly so—but char-
acteristic examples that embody very standard control and data structures. The method
has also been tested on quite difficult examples like the distributed mutual exclusion cir-
cuit described in [4]. In [5], we have used the method to solve an open problem: It had
been conjectured that it is impossible to construct a delay-insensitive fair arbiter. We have
disproved the conjecture by constructing such an arbiter applying our method.

The most encouraging aspect of the method is that it is really a synthesis technique: it
allows a designer to construct solutions that he would never have found had he not applied
the method.

10. Acknowledgement

I am indebted to Martin Rem, Chuck Seitz, Peggy Li, and Kevin Van Horn for their
comments on the manuseript. Kevin Van Horn also contributed to the definition of the
completion of a communication. Acknowledgements are also due to the Eindhoven VLSI
Club, in particular Huub Schols, for their comments and criticisms during an oral presen-
tation of this material in September 1885.

15

The research described in this paper was sponsored by the Defense Advanced Research
Projects Agency, ARPA Order number 3771, and was monitored by the Office of Naval
Research under contract number N00014-79-C-0597.

11. References

[1] Dijkstra, Edsger W., A Discipline of Programming. Prentice-Hall, Englewood Cliffs
NJ (1976)

[2] Hoare, C.A.R. “Communicating Sequential Processes”. Comm. ACM 21,8, pp 666-677
(August 1978)

[3] Martin, A.J., “The Probe: an Addition to Communication Primitives”, Information
Processing letters 20, pp 125-130 (1985)

[4] Martin, A.J., “The Design of a Self-Timed Circuit for Distributed Mutual Exclusion”,
Proc. 1985 Chapel Hill Conf. VLSI, ed. Henry Fuchs, pp 247-260 (1985)

[5) Martin, A.J., “A Delay-Insensitive Fair Arbiter”, Caltech Computer Science Technical
Report 5193:TR:85 (1985)

[6] Martin, AJ., “FIFO: an Exercise in Compiling Programs into Circuits”, Caltech Com-
puter Science Technical Memo (1985)

[7] Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading MA
(1980)

[8] Molnar, C.E., et al. “Synthesis of Delay-Insensitive Modules”, Proc. 1985 Chapel Hill
Conf, VLSI, ed. Henry Fuchs, pp 67-86, (1985)

[9] Rem, M., “Concurrent Computations and VLSI Circuits”, in “Control Flow and Data
Flow: Concepts in Distributed Programs”, ed. M.Broy, pp 399-437 Springer-Verlag
Berlin Heidelberg (1985).

[10] Seitz, C.L., “System Timing”, Chapter 7 in Mead & Conway, Introduction to VLSI
Systems, Addison-Wesley, Reading MA (1980)

[11] Snepscheut, J.v.d., “Trace Theory and VLSI Design® LNCS 200, Springer-Verlag Berlin
Heidelberg (1985).

18

